ECE 627

Spring 2011
Midterm Examination

May 11, 2011, 3-3:50pm

1. In the binary-weighted 10 -bit DAC shown on top, the capacitor array can be replaced as shown below.
a. Find the element values in the new DAC. Choose $C_{6}=C_{1}$.
b. What are the advantages and disadvantages of the new circuit?

2. In the 4 -bit SAR ADC shown, during the sampling phase the S_{S} switches are closed; during the next (hold) phase, the S_{H} switches are closed. After the hold phase, switches S_{1}, S_{2}, S_{3}, and S_{4} are used to test for the MSB, next MSB, etc.
a. Which of these switches will be closed when the MSB is found?
b. Which switches are closed when the next bit is found if the MSB was 1 ?
c. Which switches are closed when the next bit is found if the MSB was 0 ?

ECE 627
 Spring 2011
 Midterm Examination
 Solution

1.

a. Since $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots \mathrm{C}_{5}$ are connected in the same way as $\frac{C}{2}, \ldots, \frac{C}{2^{5}}$ elements, and deliver $q_{i}=+C_{i} V_{\text {ref }}$ in to the virtual ground A , $C_{i}=2^{-i} C$, for $i=1,2, \ldots, 5$.

For $6 \leq i \leq 10$, we have

$$
\begin{aligned}
+q_{i}=C_{C} V_{B}=\frac{C_{c} C_{i} V_{R E F}}{C_{c}+C_{T}} & =\frac{C_{i} V_{R E F}}{1+\frac{C_{T}}{C_{c}}} \doteq \frac{C V_{R E F}}{2^{i}} \text { where } \\
C_{T} & =\sum_{i=6}^{10} C_{i}
\end{aligned}
$$

Since by assumption, $C_{6}=C_{1}$, for $i=6$,

$$
\begin{aligned}
& \frac{C}{2} \frac{V_{R E F}}{\left(1+\frac{C_{T}}{C_{c}}\right)}=\frac{C V_{R E F}}{2^{6}} \\
& \frac{C_{T}}{C_{c}}=2^{5}-1=31
\end{aligned}
$$

For $i=7,8,9,10$ therefore

$$
\frac{C_{i} V_{R E F}}{32}=\frac{C V_{R E F}}{2^{i}}
$$

$C_{i}=2^{5-i} C=C_{i-5}, C_{7}=C_{2}, \ldots$
$C_{T}=\sum_{i=1}^{5} C_{i}=C\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{32}\right)=\frac{31}{32} C$
$C_{c}=\frac{C_{T}}{31}=\frac{C}{32}=C_{10}=32 \mathrm{fF}$
b. The new circuit has one more capacitor. Spread of capacitors reduced by half, may be possible to scale all capacitors by $\frac{1}{2^{5}}$. Circuit is stray sensitive at left side terminal of C_{c}. Circuit is also sensitive to C_{C}. Monotonicity and glitch of the new circuit is possibly better. The new circuit is faster.
2. Charge flow through the capacitor in to $V_{x}=V_{o s}$ as $S_{H} \rightarrow 1$.

$$
q=C V_{i n}-C\left(V_{S}-V_{H}\right)
$$

a. For MSB, $V_{S}-V_{H} \doteq \frac{V_{\text {ref }}}{2}$ obtained if $V_{S}=\frac{3}{4} V_{\text {ref }}, V_{H}=\frac{1}{4} V_{\text {ref }}$

$$
S_{1}=1, S_{2}=0, S_{3}=0, S_{4}=0
$$

b. If $M S B=1$, next $V_{S}-V_{H} \doteq \frac{3}{4} V_{\text {ref }}$ obtained if $V_{S}=V_{\text {ref }}, V_{H}=$ ${ }_{4}^{1} V_{\text {ref }}$

$$
S_{1}=1, S_{2}=1, S_{3}=0, S_{4}=0
$$

c. If $M S B=0$, next $V_{S}-V_{H} \doteq \frac{1}{4} V_{\text {ref }}$ obtained if $V_{S}=\frac{\text { Vref }}{2}, V_{H}=\frac{1}{4} V_{\text {ref }}$

$$
S_{1}=0, S_{2}=1, S_{3}=0, S_{4}=0
$$

